

2140 Research Dr Project Information: Contractor Information:

 Livermore, CA 94550
 Name:
 Name:

 Ph 925 447 3500
 Adress:
 Contact:

 Fax 925 447 1595
 Phone:

General Product Information:

Web Width:

Product Specification Submittal

PrimeStud™ Design Thickness: 0.0158 Yield Strength: 41 ksi

1.625in

Flange Width:

1.25 in

Member Designation: 162PS125-15 Galvanized Coating: G-60

			-				
ection Properties		ICC - ER-3503				STLD WEB SIZE	
Gross Propert	ies	Effective Properties		Torsional Properties		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Area (in²)	0.075	lxe (in ⁴)	0.030	Xo (in)	-1.155	31	E E
x (in⁴)	0.034	Sxe (in³)	0.034	Jx1000 (in⁴)	0.00062	[] [] []	自其
Rx (in)	0.678	Ma FB(in-k)	0.85	Cw (in ⁶)	0.012	1.2500	BBND XXNESS XXNESS NUM N
y (in⁴)	0.017	Ma 48(in-k)	0.71	Ro (in)	1.421	0.1250	EMBER = 0.01 RAOII =
Ry (in)	0.475	Va (lb)	185	ß	0.339	ALIANIE HEMME	= 0.0g
				Lu (in)	29.3	- RETU	575°

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

1	i i	i e								
	Spacing		5 psf			7.5 psf			10 psf	
	(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
	12	9' 3"	7' 4"	6' 5"	8' 1"	6' 5"	6' 5"	7' 4"	5' 10"	5' 1"
	16	8' 5"	6' 8"	5' 10"	7' 4"	5' 10"	5' 10"	6' 6" f	5' 3"	4' 7"
	24	7' 4"	5' 10"	5' 1"	6' 1" f	5' 1"	5' 1"	5' 3" f	4' 7"	4' 0"

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- 1. Limiting heights are in accordance with AISI S100-07/S2-10 using all steel non-composite design.
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3. For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

2140 Research Dr **Project Information:** Contractor Information:

Livermore, CA 94550 Name: Name: Ph 925 447 3500 Adress: Contact: Fax 925 447 1595 Phone:

General Product Information: Web Width:

Product Specification Submittal

Flange Width: 1.375 **PrimeStud™** Design Thickness: 0.0189 Yield Strength: 41 KSI

1.625

Member Designation: 162PS137-19 Galvanized Coating: G-60

Section Properties		ICC - ER-3503				STID	WEB SIZE
Gross Properties		Effective Properties		Torsional Properties		28.7	- S - S
Area (in²)	0.094	lxe (in ⁴)	0.039	Xo (in)	-1.275	187	
Ix (in ⁴)	0.044	Sxe (in³)	0.045	Jx1000 (in ⁴)	0.01116	_	全
Rx (in)	0.683	Ma FB(in-k)	1.09	Cw (in ⁶)	0.017	1250 //	ALL BEND THICKNESS
ly (in ⁴)	0.025	Ma 48(in-k)	0.97	Ro (in)	1.537	0.126	RADII = 0.0150'
Ry (in)	0.517	Va (lb)	219	ß	0.311		3150" = 0.09
				Lu (in)	31.7	٩.	.09375"

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

ı i	i e					,				
Spacing		5 psf			7.5 psf			10 psf		l
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360	
12	9'0"	9'0"	7'10"	7'10"	7'10"	6'10"	7'1"	7'1"	6'2"	l
16	8'2"	8'2"	7'1"	7'1"	7'1"	6'2"	6'6"	6'6"	5'8"	l
24	7'1"	7'1"	6'2"	6'2"	6'2"	5'5"	5'8"	5'8"	4'11"	l

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- 1. Limiting heights are in accordance with AISI S100-07/S2-10 using all steel non-composite design.
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3.For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

2140 Research Dr Livermore, CA 94550

Ph 925 447 3500 Fax 925 447 1595 Project Information:

Name:

Adress:

Contractor Information:

Name:

Phone:

Contact:

General Product Information:

Product Specification SubmittalWeb Width:1.625Flange Width:1.375PrimeStud™Design Thickness:0.0248Yield Strength:41 KSI

Member Designation: 162PS137-24 Galvanized Coating: G-60

MEHINE	Member Designation.	102F3137-24 Galvanized Coating.				G-60		
Section Prope	erties	ICC - ER-3503						
Gross Propert	ies	Effective Properties		Torsional Properties		7.5500		
Area (in²)	0.123	lxe (in ⁴)	0.054	Xo (in)	-1.273	181		
Ix (in⁴)	0.057	Sxe (in³)	0.064	Jx1000 (in ⁴)	0.02513	_		
Rx (in)	0.68	Ma FB(in-k)	1.57	Cw (in ⁶)	0.023	2500		
ly (in ⁴)	0.033	Ma 48(in-k)	1.39	Ro (in)	1.532	0.128		
Ry (in)	0.515	Va (lb)	231	ß	0.31			
				Lu (in)	31.8	9		

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

i i	•						Ī		Ē
Spacing		5 psf			7.5 psf			10 psf	
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
12	11'2"	8'10"	7'9"	9'9"	7'9"	6'9"	8'10"	7'0"	6'2"
16	10'2"	8'1"	7'0"	8'10"	7'0"	6'2"	8'1"	6'5"	5'7"
24	8'10"	7'0"	6'2"	7'9"	6'2"	5'4"	7'0"	5'7"	4'10"

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- $1. \ Limiting \ heights \ are \ in \ accordance \ with \ AISI \ S100-07/S2-10 \ using \ all \ steel \ non-composite \ design.$
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3. For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

2140 Research Dr Project Information: Contractor Information:

 Livermore, CA 94550
 Name:
 Name:

 Ph 925 447 3500
 Adress:
 Contact:

 Fax 925 447 1595
 Phone:

General Product Information:

Product Specification Submittal PrimeStud™

Web Width: 2.5 Flange Width: 1.25

Design Thickness: 0.0158 Yield Strength: 41 KSI

Member Designation: 250PS125-15 Galvanized Coating: G-60

Section Prope	ection Properties					STUD WEB SIZE
Gross Propert	ties	Effective Properties		Torsional Properties		20500 P
Area (in ²) Ix (in ⁴) Rx (in)	0.088 0.091 1.015	Ixe (in ⁴) Sxe (in ³) Ma FB(in-k)	0.081 0.06 1.47	Xo (in) Jx1000 (in ⁴) Cw (in ⁶)	-0.992 0.00735 0.027	THE BRICK AND TH
ly (in⁴) Ry (in)	0.019 0.465	Ma 48(in-k) Va (lb)	1.23 221	Ro (in) ß Lu (in)	1.494 0.559 29.9	POUT = 1.05775*

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

	i e									
Spacing		5 psf			7.5 psf			10 psf		l
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360	
12	12'10"	10'2"	8'10"	11'2"	8'10"	7'9"	9'10" f	8'1"	7'0"	l
16	11'8"	9'3"	8'1"	9'10" f	8'1"	7'0"	8'6" f	7'4"	6'5"	l
24	9'10" f	8'1"	7'0"	8'1" f	7'0"	6'2"	7'0" f	6'5"	5'7"	l

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- 1. Limiting heights are in accordance with AISI S100-07/S2-10 using all steel non-composite design.
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3. For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

Member Designation:

0.51

2140 Research Dr Project Information: Contractor Information:

 Livermore, CA 94550
 Name:
 Name:

 Ph 925 447 3500
 Adress:
 Contact:

 Fax 925 447 1595
 Phone:

General Product Information:

Galvanized Coating:

0.517

33.3

Product Specification Submittal

<u>PrimeStud™</u>

Va (lb)

Web Width: 2.5 Flange Width: 1.375

G-60

Design Thickness: 0.0189 Yield Strength: 41 KSI

	•						
Section Properties Gross Properties		ICC - ER-3503				STID	WEB SIZE
		Effective Properties		Torsional Properties		- S - 1	- S - S
Area (in²)	0.11	lxe (in⁴)	0.104	Xo (in)	-1.105	3	
Ix (in ⁴)	0.116	Sxe (in³)	0.077	Jx1000 (in ⁴)	0.01313	_	FIE
Rx (in)	1.024	Ma FB(in-k)	1.89	Cw (in ⁶)	0.040	2560	AC BEAD THE ACTION IN WINNIN W
ly (in⁴)	0.029	Ma 48(in-k)	1.66	Ro (in)	1.591	0.128	NEWBER AND IN A PART OF THE PA

Section Property Notes:

Ry (in)

1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."

ß Lu (in)

- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.

436

250PS137-19

- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

i i									
Spacing		5 psf			7.5 psf			10 psf	
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
12	12'5"	12'5"	10'10"	10'10"	10'10"	9'6"	9'10"	9'10"	8'7"
16	11'4"	11'4"	9'10"	9'10"	9'10"	8'7"	9'0"	9'0"	7'10"
24	9'10"	9'10"	8'7"	8'7"	8'7"	7'6"	7'10"	7'10"	6'10"

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- $1. \ Limiting \ heights \ are \ in \ accordance \ with \ AISI \ S100-07/S2-10 \ using \ all \ steel \ non-composite \ design.$
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3. For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

2140 Research Dr **Project Information:** Contractor Information:

Livermore, CA 94550 Name: Name: Ph 925 447 3500 Adress: Contact: Fax 925 447 1595 Phone:

General Product Information: Web Width:

Product Specification Submittal

Flange Width: 1.375 **PrimeStud™** Design Thickness: 0.0248 Yield Strength: 41 KSI

2.5

250PS137-24 Member Designation: Galvanized Coating: G-60

					ca coatii.g.	2 00	
Section Prope	ection Properties					STUD WEB SIZE	
Gross Propert	ties	Effective Properties		Torsional Properties			0.0
Area (in²)	0.144	lxe (in ⁴)	0.143	Xo (in)	-1.102		25
Ix (in⁴)	0.15	Sxe (in³)	0.11	Jx1000 (in ⁴)	0.02958		E E
Rx (in)	1.021	Ma FB(in-k)	2.7	Cw (in ⁶)	0.052	2560 4	THICKNESS THICKNESS
ly (in⁴)	0.037	Ma 48(in-k)	2.36	Ro (in)	1.586	0.1250	WEMBER S = 0.01 RAOII =
Ry (in)	0.508	Va (lb)	318	ß	0.517	HEMME	- 25
				Lu (in)	32.4	3. BEI	09375

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

ı i	i e					,			r	
Spacing		5 psf			7.5 psf			10 psf		
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360	
12	15'6"	12'3"	10'9"	13'6"	10'9"	9'4"	12'4"	9'9"	8'6"	
16	14'1"	11'2"	9'9"	12'4"	9'9"	8'6"	11'2"	8'10"	7'9"	
24	12'4"	9'9"	8'6"	10'9"	8'6"	7'5"	9'5" f	7'9"	6'9"	

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- 1. Limiting heights are in accordance with AISI S100-07/S2-10 using all steel non-composite design.
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3.For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

2140 Research Dr **Project Information: Contractor Information:**

Livermore, CA 94550 Name: Name: Ph 925 447 3500 Adress: Contact: Fax 925 447 1595 Phone:

General Product Information:

Web Width:

Product Specification Submittal

Flange Width:

1.25

3.625

Design Thickness: 0.0158 Yield Strength: **41 KSI**

Member	Member Designation:		362PS125-15		ed Coating:	G-60	
Section Prope		ICC - ER-3503					/EB SIZE
Gross Propert	Gross Properties		Effective Properties		erties	258-7	1 S S S S S S S S S S S S S S S S S S S
Area (in²)	0.106	lxe (in ⁴)	0.188	Xo (in)	-0.853	3	
Ix (in⁴)	0.214	Sxe (in³)	0.095	Jx1000 (in ⁴)	0.00883	-	FR
Rx (in)	1.422	Ma FB(in-k)	2.33	Cw (in ⁶)	0.059	1,2500	45" L BEND L BEN
ly (in⁴)	0.021	Ma 48(in-k)	1.95	Ro (in)	1.717	0.1250	RADII O
Ry (in)	0.447	Va (lb)	273	ß	0.753		E-MSER 8-0.0150* RAOI = 0.05375* HEMMED RE
				Lu (in)	31.9	Р.	375" D RETU
							2

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

ı i	1									
Spacing		5 psf			7.5 psf			10 psf		İ
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360	_
12	17.0"	13'6"	11'9"	14'4" f	11'9"	10'3"	12'5"f	10'8"	9'4"	İ
16	15'3" f	12'3"	10'8"	12'5" f	10'8"	9'4"	10'9" f	9'8"	8'6"	İ
24	12'5" f	10'8"	9'4"	10'2" f	9'4"	8'2"	8'9" f	8'6"	7'5"	İ

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- 1. Limiting heights are in accordance with AISI S100-07/S2-10 using all steel non-composite design.
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3.For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

2140 Research Dr **Project Information: Contractor Information:**

Livermore, CA 94550 Name: Name: Ph 925 447 3500 Adress: Contact: Fax 925 447 1595 Phone:

General Product Information: Web Width:

Product Specification Submittal

Flange Width: Design Thickness: 0.0189 Yield Strength: **41 KSI**

3.625

1.375

Member Designation: 362PS137-19 Galvanized Coating: G-60

ICC - ER-3503					
Effective Pron	_			LITS .	O WEB SIZE
Lifective Flop	Effective Properties		erties	28.7	- B S
32 lxe (in⁴)	0.240	Xo (in)	0.957	1 4 1	
71 Sxe (in³)	0.123	Jx1000 (in ⁴)	0.01566	_	EZS
35 Ma FB(in-k)	3.01	Cw (in ⁶)	0.087		45" HEND UKNESS
32 Ma 48(in-k)	2.67	Ro (in)	1.794	N N	READER NEW PROPERTY OF THE PRO
93 Va (lb)	288	ß	0.715		EDBER 8/01 = 0.0150* 1- 0.0150*
		Lu (in)	35.1	Р,	375* D RETU
	71 Sxe (in³) 35 Ma FB(in-k) 32 Ma 48(in-k)	71 Sxe (in³) 0.123 35 Ma FB(in-k) 3.01 32 Ma 48(in-k) 2.67	71 Sxe (in ³) 0.123 Jx1000 (in ⁴) 35 Ma FB(in-k) 3.01 Cw (in ⁶) 32 Ma 48(in-k) 2.67 Ro (in)	71 Sxe (in ³) 0.123 Jx1000 (in ⁴) 0.01566 35 Ma FB(in-k) 3.01 Cw (in ⁶) 0.087 32 Ma 48(in-k) 2.67 Ro (in) 1.794 93 Va (lb) 288 ß 0.715	71 Sxe (in³) 0.123 Jx1000 (in⁴) 0.01566 35 Ma FB(in-k) 3.01 Cw (in⁶) 0.087 32 Ma 48(in-k) 2.67 Ro (in) 1.794 93 Va (lb) 288 ß 0.715

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

i i							•		Ē
Spacing		5 psf			7.5 psf			10 psf	
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
12	16'5"	16'5"	14'5"	14'5"	14'5"	12'7"	13'1"	13'1"	11'5"
16	15'0"	15'0"	13'1"	13'1"	13'1"	11'5"	11'10"	11'10"	10'4"
24	13'1"	13'11"	11'5"	11'5"	11'5"	10'0"	10'0"	10'10"	9'1"

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- 1. Limiting heights are in accordance with AISI S100-07/S2-10 using all steel non-composite design.
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3.For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

2140 Research Dr Project Information: Contractor Information:

 Livermore, CA 94550
 Name:
 Name:

 Ph 925 447 3500
 Adress:
 Contact:

 Fax 925 447 1595
 Phone:

General Product Information:

Product Specification Submittal

PrimeStud™Design Thickness (in):3.625Flange Width (in):1.3751.375PrimeStud™Design Thickness (in):0.0236Yield Strength:41 KSI

Member Designation: 362PS137-24 Galvanized Coating: G-60

Costion Duona	ution .	ICC - ER-3503				
Section Prope Gross Propert		Effective Prope	rtios	Torsional Prop	ortios	STUD WEB SIZE
Weight (lb/ft)	0.59	lxe (in ⁴) Sxe (in ³)	1.067 0.358	Xo (in) Jx1000 (in ⁴)	0.757 0.04737	1.5000
Area (in²)	0.231	Ma FB(in-k)	8.06	Cw (in ⁶)	0.341	ALL BEND R. ALL BEND R. ALL SEXT R. ALL SE
Ix (in ⁴) Rx (in)	1.161 2.241	Ma 48(in-k) Va (lb)	6.86 351	Ro (in) ß	2.408 0.901	2250"
ly (in ⁴)	0.047	· a (10)	331	Lu (in)	30.8	99375* AD RETUR
Ry (in)	0.451					2

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

	i			•		•	1		
Spacing		5 psf			7.5 psf			10 psf	
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
12	20'6"	16'3"	14'3"	17'11"	14'3"	12'5"	16'3"	12'11"	11'3"
16	18'8"	14'9"	12'11"	16'3"	12'11"	11'3"	14'8"	11'9"	10'3"
24	16'3"	12'11"	11'3"	13'10"f	11'3"	9'10"	12'0"f	10'3"	8'11"

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- $1. \ Limiting \ heights \ are \ in \ accordance \ with \ AISI \ S100-07/S2-10 \ using \ all \ steel \ non-composite \ design.$
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3. For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

2140 Research Dr Project Information: Contractor Information:

 Livermore, CA 94550
 Name:
 Name:

 Ph 925 447 3500
 Adress:
 Contact:

 Fax 925 447 1595
 Phone:

General Product Information:

Product Specification Submittal

Web Width: 4 Flange Width: 1.25
Design Thickness: 0.0158 Yield Strength: 41 KSI

Member Designation: 400PS125-15 Galvanized Coating: G-60

IVICITIBEI	Member Designation.		400F3123-13 Galvallized Coatilig.				
Section Prope	erties	ICC - ER-3503					
Gross Propert	ies	Effective Prope	rties	Torsional Properties		2.500°	
Area (in²)	0.112	lxe (in ⁴)	0.235	Xo (in)	-0.816	9,1	
lx (in⁴)	0.27	Sxe (in³)	0.107	Jx1000 (in ⁴)	0.00933		
Rx (in)	1.552	Ma FB(in-k)	2.62	Cw (in ⁶)	0.073	1.2500'	
ly (in ⁴)	0.022	Ma 48(in-k)	2.19	Ro (in)	1.808	0.1250	
Ry (in)	0.441	Va (lb)	232	ß	0.796	18	
				Lu (in)	31.7	4	

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

1	i e			•						
Spacing		5 psf			7.5 psf			10 psf		İ
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360	
12	18'4"	14'6"	12'8"	15'3" f	12'8"	11'1"	13'2" f	11'6"	10'1"	İ
16	16'1" f	13'2"	11'6"	13'2" f	11'6"	10'1"	11'5" f	10'6"	9'2"	İ
24	13'2" f	11'6"	10'1"	10'9"	10'1"	8'9"	9'4" f	9'2"	8'0"	İ

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- $1. \ Limiting \ heights \ are \ in \ accordance \ with \ AISI \ S100-07/S2-10 \ using \ all \ steel \ non-composite \ design.$
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3. For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

2140 Research Dr Project Information: Contractor Information:

 Livermore, CA 94550
 Name:
 Name:

 Ph 925 447 3500
 Adress:
 Contact:

 Fax 925 447 1595
 Phone:

General Product Information:

Web Width:

Product Specification Submittal

PrimeStud™ Design Thickness: 0.0189 Yield Strength: 41 KSI

Flange Width:

1.375

Member Designation: 400PS137-19 Galvanized Coating: G-60

Section Prope	ection Properties					STID	WEB SIZE
Gross Propert	Gross Properties		Effective Properties		erties	28.7	0.50
Area (in²)	0.139	lxe (in⁴)	0.301	Xo (in)	-0.918	1 4 1	
lx (in⁴)	0.341	Sxe (in³)	0.138	Jx1000 (in ⁴)	0.01651	_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rx (in)	1.568	Ma FB(in-k)	3.39	Cw (in ⁶)	0.108	2500	F BEND L
ly (in⁴)	0.033	Ma 48(in-k)	3.00	Ro (in)	1.881	0.1280	NEWBER NO.
Ry (in)	0.486	Va (lb)	245	ß	0.762		EARSR EAUTH 0.01500 EAUTH 0.05375*
				Lu (in)	34.9	9	375** D RETU
							2

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

i i						,				
Spacing		5 psf			7.5 psf			10 psf		ĺ
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360	_
12	17'9"	17'9"	15'6"	15'6"	15'6"	13'7"	14'1"	14'1"	12'4"	ĺ
16	16'2"	16'2"	14'1"	14'1"	14'1"	12'4"	12'10"	12'10"	11'2"	ĺ
24	14'1"	14'1"	12'4"	12'3" f	12'3" f	10'9"	10'7" f	10'7" f	9'9"	ĺ

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- 1. Limiting heights are in accordance with AISI S100-07/S2-10 using all steel non-composite design.
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3. For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

2140 Research Dr Project Information: Contractor Information:

 Livermore, CA 94550
 Name:
 Name:

 Ph 925 447 3500
 Adress:
 Contact:

 Fax 925 447 1595
 Phone:

General Product Information:

Product Specification Submittal PrimeStud™

Web Width: 4 Flange Width: 1.375

Design Thickness: 0.0248 Yield Strength: 41 KSI

Member Designation: 400PS137-24 Galvanized Coating: G-60

Section Prope	Section Properties				STUD WEB SIZE		
Gross Propert	ies	Effective Properties		Torsional Properties		1.8	
Area (in²)	0.181	lxe (in ⁴)	0.416	Xo (in)	-0.915		
Ix (in⁴)	0.444	Sxe (in³)	0.199	Jx1000 (in ⁴)	0.03721		世事
Rx (in)	1.565	Ma FB(in-k)	4.89	Cw (in ⁶)	0.14	1250 H	CKNESS CKNESS CKNESS
ly (in⁴)	0.043	Ma 48(in-k)	4.31	Ro (in)	1.876		NEWBER = 0.01
Ry (in)	0.484	Va (lb)	303	ß	0.762		- S
				Lu (in)	34.8	7° BED	

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

ı i	i e									
Spacing		5 psf			7.5 psf			10 psf		l
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360	
12	22'2"	17'7"	15'4"	19'4"	15'4"	13'5"	17'7"	13'11	12'2"	l
16	20'1"	15'11"	13'11"	17'7"	13'11"	12'2"	15'7" f	12'8"	11'1"	l
24	17'7"	13'11"	12'2"	14'8" f	12'2"	10'7"	12'9" f	11'1"	9'8"	l

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- $1. \ Limiting \ heights \ are \ in \ accordance \ with \ AISI \ S100-07/S2-10 \ using \ all \ steel \ non-composite \ design.$
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3. For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

2140 Research Dr Project Information: Contractor Information:

 Livermore, CA 94550
 Name:
 Name:

 Ph 925 447 3500
 Adress:
 Contact:

 Fax 925 447 1595
 Phone:

General Product Information: Web Width: 6

Product Specification Submittal

PrimeStud™ Design Thickness: 0.0158 Yield Strength: 41 KSI

Flange Width:

1.25

Member Designation: 600PS125-15 Galvanized Coating: G-60

	_ co.ga.c.o				ca coatii.g.	0 00	
Section Properties		ICC - ER-3503				STID	WEB SIZE
Gross Properties		Effective Properties		Torsional Properties		28.7	≠ 8
Area (in²)	0.144	lxe (in ⁴)	0.599	Xo (in)	-0.670	3	
Ix (in⁴)	0.709	Sxe (in³)	0.174	Jx1000 (in⁴)	0.01196		EZE
Rx (in)	2.222	Ma FB(in-k)	4.27	Cw (in ⁶)	0.177	2500	AS."
ly (in⁴)	0.024	Ma 48(in-k)	3.40	Ro (in)	2.357	0.126	NEMBER S = 0.01 RAOII =
Ry (in)	0.409	Va (lb)	195	ß	0.919	المراج ال	HEMME = 0.09
				Lu (in)	27.4	4	375"

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

	Ī					i i	i			
Spacing	5 psf			5 psf 7.5 psf				10 psf		
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360	
12	23'9" f	19'10"	17'4"	19'5" f	17'4"	15'2"	16'10" f	15'9"	13'9"	
16	20'8" f	18'0"	15'9"	16'10" f	15'9"	13'9"	14'7" f	14'3"	12'6"	
24	16'10" f	15'9"	13'9"	13'9" f	13'9" f	12'0"	11'11" f	11'11" f	10'11"	

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- $1. \ Limiting \ heights \ are \ in \ accordance \ with \ AISI \ S100-07/S2-10 \ using \ all \ steel \ non-composite \ design.$
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3. For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

2140 Research Dr Project Information: Contractor Information:

 Livermore, CA 94550
 Name:
 Name:

 Ph 925 447 3500
 Adress:
 Contact:

 Fax 925 447 1595
 Phone:

General Product Information:

Product Specification Submittal

Web Width: 6 Flange Width: 1.375

Design Thickness: 0.0189 Yield Strength: 41 KSI

Member Designation: 600PS137-19 Galvanized Coating: G-60

Wielliber Designation.		•				G-00
Section Properties Gross Properties		ICC - ER-3503				
		Effective Properties		Torsional Properties		1.8.
Area (in²)	0.176	lxe (in⁴)	0.766	Xo (in)	-0.76	
lx (in ⁴)	0.889	Sxe (in³)	0.226	Jx1000 (in ⁴)	0.02101	_
Rx (in)	2.244	Ma FB(in-k)	5.54	Cw (in ⁶)	0.263	1,2500
ly (in⁴)	0.036	Ma 48(in-k)	4.72	Ro (in)	2.413	0.1250
Ry (in)	0.453	Va (lb)	135	ß	0.910	
				Lu (in)	30.4	٠,

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

Spacing		5 psf			7.5 psf			10 psf		l
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360	
12	24'3"	24'3"	21'2"	21'2"	21'2"	18'6"	19'2" f	19'2" f	16'10"	l
16	22'1"	22'1"	19'3"	19'2" f	19'2" f	16'10"	16'7" f	16'7" f	15'3"	l
24	19'2" f	19'2" f	16'10"	15'8" f	15'8" f	14'8"	13'7" f	13'7" f	13'4"	l

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- 1. Limiting heights are in accordance with AISI S100-07/S2-10 using all steel non-composite design.
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3. For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.

2140 Research Dr Project Information: Contractor Information:

 Livermore, CA 94550
 Name:
 Name:

 Ph 925 447 3500
 Adress:
 Contact:

 Fax 925 447 1595
 Phone:

General Product Information:

Product Specification Submittal

<u>PrimeStud™</u>

Web Width: 6 Flange Width: 1.375

Design Thickness: 0.0248 Yield Strength: 41 KSI

Member Designation: 600PS137-24 Galvanized Coating: G-60

Wichiber Designation.			J/-ZT		eu coating.	G-00
Section Properties Gross Properties		ICC - ER-3503				
		Effective Properties		Torsional Properties		250-7
Area (in²)	0.231	lxe (in⁴)	1.067	Xo (in)	-0.757	1 8 1
lx (in ⁴)	1.161	Sxe (in³)	0.358	Jx1000 (in ⁴)	0.04737	_ [
Rx (in)	2.241	Ma FB(in-k)	8.06	Cw (in ⁶)	0.341	1.2500
ly (in⁴)	0.047	Ma 48(in-k)	6.86	Ro (in)	2.408	0.128
Ry (in)	0.451	Va (lb)	351	ß	0.901	
				Lu (in)	30.8	4

Section Property Notes:

- 1. Calculated properties are based on AISI S100-12, "North American Specification for the Design of Cold-Formed Steel Structural Members."
- 2. The centerline bend radius is based upon inside corner radii.
- 3. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI A7.2.
- 4. Tabulated gross properties, including torsional properties, are based upon full-unreduced cross section of the studs, away from punchouts.
- 5. For deflection calculations, use the effective moment of inertia.
- 6. Allowable moment includes cold-work of forming.
- 7. Web depth for track sections is equal to the nominal stud width plus 2 times the design thickness plus the bend radius. Hems on nonstructural track sections are ignored.

Non-Composite Interior Wall Heights

i						,	ı			
Spacing	5 psf			7.5 psf				10 psf		
(in) O.C.	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360	
12	30'4"	24'1"	21'0"	26'6"	21'0"	18'4"	23'2" f	19'1"	16'8"	
16	27'7"	21'10"	19'1"	23'2"f	19'1"	16'8"	20'0"	17'4"	15'2"	
24	23'2" f	19'1"	16'8"	18'11"f	16'8"	14'7"	16'4" f	16'4" f	13'3"	

Table Notes:

- "f" Flexible controls. If no letter appears, deflectional controls
- $1. \ Limiting \ heights \ are \ in \ accordance \ with \ AISI \ S100-07/S2-10 \ using \ all \ steel \ non-composite \ design.$
- 2. Limiting heights are established by considering flexure, shear, web crippling, and deflection
- 3. For bending, studs are assumed to be adequately braced to develop full allowable moment. Studs are considered fully braced when unbraced length is less than UL
- 4. Lateral wall loads have not been reduced for strength or deflection. The full wall lateral load is applied.
- 5. Limiting heights shown in this table are based on the steel properties only. No composite action has been accounted for.
- 6. No web stiffeners are required for studs with h/t > 200, web crippling and shear values have been confirmed by testing and reported in the PrimeStud properties table.